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1

This paper deals with the generalized Markov�Stieltjes inequality for a
generalized Gaussian Birkhoff quadrature formula (GGBQF). The general-
ized Markov�Stieltjes inequality for a Gaussian quadrature formula has
extensive applications in the covergence of product integration rules and an
estimation of the rate of convergence of a Gaussian quadrature formula for
singular integrands. For full information on this subject see the introduc-
tion and the references in [3].

Let :(x) be a nondecreasing continuous function on [a, b]. Then there
exists a unique set of nodes

X : a=x0<x1< } } } <xm<xm+1=b (1.1)

and a Gauss quadrature formula

|
b

a
f (x) d:(x)= :

m

i=1

*i f (xi), (1.2)

determined uniquely from being exact for all f # P2m&1 , the space of
all polynomials of degree at most 2m&1. As we know, for this Gauss
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quadrature formula with simple nodes the Markof�Stieltjes inequality
holds [5, p. 49]:

:
r&1

i=1

*i�|
xr

a
d:(x)� :

r

i=1

*i , 1�r�m. (1.3)

Recently, the generalized Markov�Stieltjes inequality was extended to
Tura� n quadrature formulas with nodes of odd multiplicities by Gori [3].
To state her results let +i , i=1, ..., m, be odd integers and n=
m&1+�m

i=1 +i . Then there exists a unique set of nodes X such that the
Gaussian quadrature formula

|
b

a
f (x) d:(x)= :

m

i=1

:
+i&1

j=0

aij f ( j )(xi) (1.4)

is exact for all f # Pn . For this Gaussian quadrature formula the generalized
Markov�Stieltjes inequality holds [3]:

Theorem A. Given an r, 1�r�m, if f is n-absolutely monotone in
(a, xr], i.e.,

f (k)(x)�0, x # (a, xr], k=0, 1, ..., n, (1.5)

then

:
r&1

i=1

:
+i&1

j=0

aij f ( j )(xi)�|
xr

a
f (x) d:(x)� :

r

i=1

:
+i&1

j=0

aij f ( j )(xi). (1.6)

On the other hand, we have known of the existence of a generalized
Gaussian Hermite quadrature formula (GGHQF) with multiple nodes and
even of a GGBQF with Birkhoff nodes. It is natural to ask if the generalized
Markov�Stieltjes inequality can be extended to these quadrature formulas.
The aim of this paper is to answer this question. Using a modification of
the idea in [3] we shall prove that the generalized Markov�Stieltjes
inequality (1.6) can be extended to a GGHQF (Section 2), but cannot be
extended to a GGBQF (Section 3); the Markov�Stieltjes inequality (1.3)
can be extended to two kinds of GGBQFs (Sections 4 and 5), although at
present we do not know whether these formulas are unique.

2

In what follows we shall use the definitions and notations of [4]. Let
E=(eij)

m+1
i=0,

n
j=0 be an incidence matrix with entries consisting of zeros and
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ones and satisfying |E | :=�i, j eij<n+1 (here we allow a zero row). For
each i, 0�i�m+1, let +i denote the smallest index j such that eij=0.
Then the following GGHQF holds [1]:

Theorem B. Let an (m+2)_(n+1) incidence matrix E satsify

+0�0, +m+1�0, +i>0, i=1, ..., m

and

|E |= :
m+1

i=0

+i=n+1&m.

Then there exists a unique set of nodes X such that the quadrature formula

|
b

a
_(X; x) f (x) d:(x)= :

eij=1

aij f ( j )(xi) (2.1)

is exact for all f # Pn , where

_(x) :=_(X; x) :=sgn `
m

i=1

(x&xi)
&i (2.2)

and

&0=+0 , &m+1=+m+1, &i=+i+1, i=1, ..., m. (2.3)

Here we quote a fundamental lemma [2, p. 30] needed later.

Lemma A. Given a ! # (a, b) let f satisfy

f (k)(x)>0, x # (a, !], k=0, 1, ..., n (2.4)

and let P # Pn&1. Then the number of zeros (counting multiplicities) of the
function

F!(x)={ f (x)&P(x),
P(x),

x # [a, !)
x # [!, b]

(2.5)

is not greater than n.

Remark. In what follows we agree that for 1�k�n

F (k)
! (x)={ f (k)(x)&P(k)(x),

P(k)(x),
x # [a, !)
x # [!, b].

Now we can state the main result in this section.
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Theorem 1. Let the assumptions of Theorem B be satified. Given an r,
1�r�m, if f satisfies (1.5) then

(&1)�m
i=r &i |

xr

a
_(X; x) f (x) d:(x)

�(&1)�m
i=r &i :

eij=1, i<r

aij f ( j )(xi), (2.6)

(&1)�m
i=r+1 &i |

xr

a
_(X; x) f (x) d:(x)

�(&1)�m
i=r+1 &i :

eij=1, i<r+1

aij f ( j )(xi). (2.7)

Here &i 's are defined by (2.3)

Proof. Let us prove (2.6).
If r=1 and &0=0 then the right side of (2.6) is zero. Meanwhile, since

_(x)=(&1)�m
i=1 &i

for x # (a, x1), the left side of (2.6) is �x1
a f (x) d:(x)�0. Thus in this case

(2.6) holds.
Now let r>1 or &0>0.
First, we are going to show that (2.6) holds if f satisfies (2.4) with !=xr .
Let ! # (xr&1 , xr) be arbitrary. Choose P # Pn&1 so that F!(x) defined in

(2.5) is annihilated by the pair (E $, X ), where E $ is obtained from E by
adding a 1 to position (i, +i), i=1, ..., r&1, r+1, ..., m.

We claim that

8(x)=[sgn(x&xr)] _(x) F!(x) (2.8)

does not change sign in (a, b).
In fact, suppose to the contrary that 8(x) changes sign at z # (a, b). If

z � X then F!(z)=0. If z=xi , 1�i�m, then 8(xi&$ ) 8(xi+$ )<0 holds
for all small $>0, which implies

(&1)&i$ F!(xi&$ ) F!(xi+$ )<0,

where &i$=&i for i{r and &i$=&i&1 for i=r. By definition we conclude
F (&i$)

! (xi)=0. That is to say, the number of zeros of F! is not less than
|E $|+1=n+1. This contradicts Lemma A. This proves that 8(x) does not
change sign in (a, b).
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Since ! # (xr&1 , xr) is arbitrary, P(x) does not change sign in (xr&1, xr).
Meanwhile P(xr&1)= f (xr&1)>0. So P(x)>0, x # (xr&1 , xr). This means

(&1)�m
i=r &i 8(x)�0, x # [a, b]. (2.9)

Thus

&|
xr

a
(&1)�m

i=r &i 8(x) d:(x)�0�|
b

xr

(&1)�m
i=r &i 8(x) d:(x). (2.10)

Hence as ! � xr we obtain

(&1)�m
i=r &i |

xr

a
_(x) f (x) d:(x)�(&1)�m

i=r &i |
b

a
_(x) P(x) d:(x)

=(&1)�m
i=r &i :

eij=1, i<r

aij f ( j )(xi). (2.11)

Next, if f satsifies (1.5) only, then we consider f=(x)= f (x)+=ex, =>0.
Applying the above conclusion and letting = � 0 yields (2.6) (see [3]).

To prove (2.7) we use the same arguments as those above except for
! # (xr , xr+1). In this case 8(x) does not change sign in (a, b) and P(x)>0,
x # (xr , xr+1). This means

(&1)�m
i=r+1 &i 8(x)�0, x # [a, b].

Thus

&|
xr

a
(&1)�m

i=r+1 &i 8(x) d:(x)�0�|
b

xr

(&1)�m
i=r+1 &i 8(x) d:(x),

or, equivalently

(&1)�m
i=r+1 &i |

xr

a
_(x) f (x) d:(x)

�(&1)�m
i=r+1 &i |

b

a
_(x) P(x) d:(x)

=(&1)�m
i=r+1 &i :

eij=1, i<r+1

aij f ( j )(xi). K
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3

The following example illustrates that a generalized Markov�Stieltjes
inequality (1.6) can not be extended to a GGBQF.

It is easy to check that

|
1

&1
f (x) dx= f (&t)+ f (t)+ 1

135 f (4)(0), t=3&1�2

is exact for every f # P5 . Meanwhile for f (x)=(1+x)7, which satisfies (1.5)
on [&1, 1], we have

|
t

&1
f (x) dx= 1

8 (1+t)8
&4.79,

:
xi<t

aij f ( j )(xi)= f (&t)+ 1
135 f (4)(0)=(1&t)7+ 56

9 > 56
9 >4.79.

Thus (2.6) is violated.

4

In [6] we obtained the GGBQF as follows.

Theorem C. Let an (m+2)_(n+1) incidence matrix E satsify the
delayed Po� lya conditions

Mk(E ) := :
k

j=0

:
m+1

i=0

eij�k+1&\, k=0, 1, ..., n,
(4.1)

Mn(E )=|E |=n+1&\

with the constant \=p, 0�p�m, and contain no odd non-Hermitian
sequences in the interior rows 1�i�m. Then for any prescribed p interior
rows ik , k=1, ..., p, there exists a set of nodes (1.1) such that (2.1) holds for
all f # Pn , where

&i={+i+1,
+i ,

i=i1 , ..., ip ,
otherwise.

(4.2)
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If we put

*i={ai0 ,
0,

ei0=1
ei0=0

(4.3)

then for this GGBQF the following is true.

Theorem 2. Under the assumptions of Theorem C we have

(&1)�m
i=r &i |

xr

a
_(X; x) d:(x)�(&1)�m

i=r &i :
r&1

i=0

*i , 1�r�m, (4.4)

(&1)�m
i=r+1 &i |

xr

a
_(X; x) d:(x)�(&1)�m

i=r+1 &i :
r

i=0

*i , 1�r�m. (4.5)

Proof. Let us give the proof of (4.4) only, the one of (4.5) being similar.
Now let E $ be otained from E by adding a 1 to the position (i, +i) for

i=i1 , ..., ip and then by dropping the 1 in the position (r, &r&1). We
distinguish two cases.

Case 1. &0=&1= } } } =&r&1=0. In this case *0=*1= } } } =*r&1=0
by (4.3) and hence the right side of (4.4) is zero. On the other hand, since

_(x)=(&1)�m
i=r &i, x # (a, xr), (4.6)

the left side of (4.4) equals �xr
a d:(x)�0. Thus in this case (4.4) holds.

Case 2. &s>&s+1= } } } =&r&1=0 with 0�s�r&1. In this case for
! # (xs , xr) and f =1 choose P # Pn&1 so that F!(x) in (2.5) is annihilated
by the pair E $, X.

We claim that 8(x) in (2.8) does not change sign in (a, b).
In fact, suppose the contrary that 8(x) changes sign at z # (a, b). If z � X

then F!(z)=0 and add a new Lagrangian row. If z=xi , 1�i�m, then by
the arguments used in the proof of Theorem 1 we conclude F (&$i)

! (xi)=0,
where &i$ is the smallest index j such that e$ij=0 in E $, since E contains no
odd non-Hermitian sequences in the interior rows. In this case we add a 1
to position (i, &i$). Let E� be obtained from E $ by the above process. Then
F!(x) is annihilated by the pair E� , Z=X _ [z], where E� is still regular [4,
p. 10]. Let Z1=[x # Z : x<!] and Z2=Z"Z1 . Let E� 1 and E� 2 be the sub-
matrices of E� corresponding to Z1 and Z2 . Then by the arguments used in
the proof of Lemma 1.7 in [4, p. 10] we can get matrices E� $1 and E� $2 and
sets Z$1 and Z$2 that annihilate the derivatives f $&P$ and P$, respectively.
Meanwhile |E� $1 |�|E� 1 |&1 and |E� $2 |�|E� 2 |&1. But f $&P$=&P$. So the
pair E� $1 , Z$1 annihilates P$, too. Hence the pair E� $=E� $1+E� $2 , Z$1 _ Z$2 , which
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is regular, annihilates the derivative P$. Noting that P$ # Pn&2 and
|E� $ |�|E� |&2�n&1, we conclude P$=0, i.e., P=const. This contradicts
the definition of P and proves the claim.

Since ! # (xs , xr) is arbitrary, P(x) does not change sign in (xs , xr).
Meanwhile P(xs)=1. So P(x)>0, x # (xs , xr). Now we see that (2.9),
(2.10), and (2.11) with f =1 hold. This proves (4.4). K

5

For each i, 0�i�m+1, let the bottom sequence in the i th row of the
matrix E be ei, ki= } } } =ei, ki++� i&1=1 (i.e., eij=0 for j<ki and j=ki++� i).
We agree that +� 0=0 and k0=k1 if e0j#0 and that +� m+1=0 and
km+1=km if em+1, j#0. Then we have [7]

Theorem D. Let an (m+2)_(n+1) incidence matrix E satisfy

ki+1�ki�ki+1++� i+1 , i=0, ..., I&1,

{ki=0, i=I, ..., J, (5.1)

ki&1�ki�ki&1++� i&1 , i=J+1, ..., m+1,

for some 0�I�J�m+1, and contain no odd non-bottom sequences in the
interior rows 1�i�m. Assume that the number of odd bottom sequences in
the rows 1�i�I&1 and J+1�i�m is q and E satifies the delayed Po� lya
conditions (4.1) with the constant \=p, q�p�q+J&I+1. Then for any
prescribed p&q interior rows ik , I�i1< } } } <ip&q�J, there exists a set of
nodes (1.1) with d:(x)#dx such that (2.1) holds for all f # Pn , where

0, i=1, ..., I&1, J+1, ..., m,

&i={+� i+1, i=i1 , ..., ip&q , (5.2)

+� i , otherwise.

Then for this GGBQF the following holds.

Theorem 3. Under the assumptions of Theorem D we have

(&1)�m
i=r &i |

xr

a
_(X; x) dx�(&1)�m

i=r &i :
r&1

i=0

*i , I�r�J, (5.3)

(&1)�m
i=r+1 &i |

xr

a
_(X; x) dx�(&1)�m

i=r+1 &i :
r

i=0

*i , I�r�J. (5.4)

Here *i 's are given by (4.3)
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Proof. Let us prove (5.3).
If r=I then the right side of (5.3) is zero. On the other hand, since (4.6)

is true, the left side of (5.3) equals �xr
a dx>0. Thus in this case (5.3) holds.

Now let r>I and let ! # (xr&1 , xr) be arbitrary. Assume that the q
rows containing odd bottom sequences are ip&q+1 , ..., ip # [1, ..., I&1,
J+1, ..., m]. Put

|i={+� i+1,
+� i ,

i=i1 , ..., ip ,
otherwise.

It is easy to check that _(x)=sgn >m
i=1 (x&xi)

|i, where _(x) is defined by
(2.2) and (5.2). Let E $ be obtained from E by adding a 1 to the position
(i, ki++� i) for i=i1 , ..., ip and then by dropping the 1 in position
(r, kr+|r&1). In his case for f =1 choose P # Pn&1 so that F!(x) in (2.5)
is annihilated by the pair E $, X. Put

Q(x) :={
(a&x)ki F (ki)

! (x)�(ki) !,

(5.5)

x # [xi , xi+1), i�I&1,
(b&x)ki+1 F (ki+1)

! (x)�(ki+1) !,
x # [xi , xi+1), I�i�m&1,

(b&x)km+1 F (km+1)
! (x)�(km+1)!,

x # [xm , b], i=m.

First, we are going to prove

|
xr

a
_(x) Q(x) dx=|

xr

a
_(x) F!(x) dx, (5.6)

|
b

xr

_(x) Q(x) dx=|
b

xr

_(x) F!(x) dx. (5.7)

Let us give the proof of (5.6) only, that of (5.7) being similar. We see

|
xr

a
_(x) Q(x) dx= :

I&1

i=0
|

xi+1

xi

_(x)
(ki) !

(a&x)ki F (ki)
! (x) dx+|

xr

xI

_(x) F!(x) dx

=|
xr

a
_(x) F!(x) dx+_(a) :

I&1

i=0

:
ki

j=1

1
j !

_[(a&xi+1) j F ( j&1)
! (xi+1)&(a&xi)

j F ( j&1)
! (xi)]

=|
xr

a
_(x) F!(x) dx+_(a) :

I

i=1

:
ki&1&1

j=ki

(a&xi)
j+1 F ( j )

! (xi)
( j+1)!

=|
xr

a
_(x) F!(x) dx.
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Next, we claim that 8(x)=[sgn(x&xr)] _(x) Q(x) does not change
sign in (a, b).

In fact, suppose to the contrary that 8(x) changes sign at z # (a, b). If
z � X, say, z # (xi , xi+1), i�I&1, then F (ki)

! (z)=0 and add a new row
(0, ..., 0, 1, 0, ..., 0), where the 1 lies on the ki th column. If z=xi , 1�i�m,
say, i�I&1, then 8(xi&$ ) 8(xi+$ )<0 holds for all small $>0, which
implies

[(&1)|i+ki&1 F (ki&1)
! (xi&$)][(&1)ki F (ki)

! (xi+$)] {<0,
>0,

i{r
i=r.

Here we need a simple observation: If a polynomial g(x) satisfies
g( y)=0, then g$( y&$ ) g( y&$ )�0 and g$( y+$ ) g( y+$ )�0 hold for all
small $>0. Thus remembering

F (ki)
! (xi)=F (ki+1)

! (xi)= } } } =F (ki+|i&1)
! (xi)=0, i{r

and

F (ki)
! (xi)=F (ki+1)

! (xi)= } } } =F (ki+|i&2)
! (xi)=0, i=r,

by induction we obtain

[(&1)|i+ki&1+ki+|i&ki&1 F (ki+|i)
! (xi&$ )]

_[(&1)ki F (ki+|i)
! (xi+$ )]�0, i{r

and

[(&1)|i+ki&1+ki+|i&ki&1&1 F (ki+|i&1)
! (xi&$ )]

_[(&1)ki F (ki+|i&1)
! (xi+$ )]�0, i=r,

or, equivalently,

F (ki+|i)
! (xi&$) F (ki+|i)

! (xi+$ )�0, i{r,

and

F (ki+|i&1)
! (xi&$ ) F (ki+|i&1)

! (xi+$ )�0, i=r,

hold for all small $>0. This explains shortly the reason for writing &$
instead of ki+|i or ki+|i&1, respectively. Hence we can obtain a new
zero F (&$i)

! (xi)=0, where &$i is the smallest index j such that j�ki and e$ij=0
in E $, since E contains no odd non-bottom sequences in the interior rows.
In this case we add a 1 to the poition (i, &i$). Let E* be otained from E $
by the above process. Then F! is annihilated by the pair E*, Z=X _ [z].
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By the arguments used in the proof of Theorem 2 we can get a contradic-
tion. This proves that 8 does not change sign.

Since ! # (xr&1 , xr) is arbitrary, P(x) does not change sign in (xr&1, xr).
Meanwhile P(xr&1)=1. So P(x)>0, x # (xr&1, xr). Now we see that (2.9)
and (2.10) hold. By (5.6) and (5.7) it follows from (2.10) that

|
xr

a
(&1)�m

i=r &i _(x) F!(x) dx(x)�0�|
b

xr

(&1)�m
i=r &i _(x) F!(x) d:(x).

Hence (2.11) occurs. This proves (5.3).
We can prove (5.4) similarly. K
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