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The generalized Markov-Stieltjes inequalities for several kinds of generalized
Gaussian Birkhoff quadrature formulas are given.  © 1996 Academic Press, Inc.

This paper deals with the generalized Markov—Stieltjes inequality for a
generalized Gaussian Birkhoff quadrature formula (GGBQF). The general-
ized Markov—Stieltjes inequality for a Gaussian quadrature formula has
extensive applications in the covergence of product integration rules and an
estimation of the rate of convergence of a Gaussian quadrature formula for
singular integrands. For full information on this subject see the introduc-
tion and the references in [3].

Let a(x) be a nondecreasing continuous function on [«, b]. Then there
exists a unique set of nodes

Xia=xo<x, <+ <X, <X,y 1=b (1.1)

m

and a Gauss quadrature formula

m

[ /) dax)= 3 701000, (12)

a i=1
determined uniquely from being exact for all feP,, ,, the space of
all polynomials of degree at most 2m —1. As we know, for this Gauss
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quadrature formula with simple nodes the Markof-Stieltjes inequality
holds [5, p.49]:

r—1

y A,gj d(x)< Y 4,  l<r<m. (1.3)

i=1 i=1

Recently, the generalized Markov-Stieltjes inequality was extended to
Turan quadrature formulas with nodes of odd multiplicities by Gori [3].
To state her results let u,, i=1,..,m, be odd integers and n=
m—1+4+>" , u;. Then there exists a unique set of nodes X such that the
Gaussian quadrature formula

m pui—1

[y dax)= 3T ay e (14)

a i=1,/=0
is exact for all fe P,. For this Gaussian quadrature formula the generalized
Markov-Stieltjes inequality holds [3]:

THEOREM A. Given an r, 1 <r<m, if [ is n-absolutely monotone in
(aa xr]a i-e'a

[P 20, xe(ax],  k=0,1,..n, (1.5)
then
r—1 pui—1 roMi
Y Y apf <] S dan< YT apf (16)
i=1j=0 i=1/=0

On the other hand, we have known of the existence of a generalized
Gaussian Hermite quadrature formula (GGHQF) with multiple nodes and
even of a GGBQF with Birkhoff nodes. It is natural to ask if the generalized
Markov-Stieltjes inequality can be extended to these quadrature formulas.
The aim of this paper is to answer this question. Using a modification of
the idea in [3] we shall prove that the generalized Markov-Stieltjes
inequality (1.6) can be extended to a GGHQF (Section 2), but cannot be
extended to a GGBQF (Section 3); the Markov-Stieltjes inequality (1.3)
can be extended to two kinds of GGBQFs (Sections 4 and 5), although at
present we do not know whether these formulas are unique.

In what follows we shall use the definitions and notations of [4]. Let
E=(e;,)7,!"_, be an incidence matrix with entries consisting of zeros and
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ones and satisfying |E|:=3, ;e;<n+1 (here we allow a zero row). For
each i, 0<i<m+1, let u,; denote the smallest index j such that e;=0.
Then the following GGHQF holds [17]:

THEOREM B. Let an (m+2)x (n+ 1) incidence matrix E satsify
ﬂ0>09 ,um+l>09 )ui>09 i:1,...,m

and

m+1
|El= Y p;=n+1—m.

i=0

Then there exists a unique set of nodes X such that the quadrature formula

[ o) () dat) = T a9, (1)
is exact for all feP,, where
o(x):=a(X; x) :=sgn ﬁ (x—x;)" (2.2)

i=1
and
Vo= Uy, Virs1=Hm+1> V,‘Zﬂi“l_l, i=1,...,m. (23)

Here we quote a fundamental lemma [2, p. 30] needed later.

LEmMMA A. Given a &€ (a, b) let f satisfy
P (x)>0, xe(a, &7, k=0,1,..n (2.4)

and let PeP, . Then the number of zeros (counting multiplicities) of the
function

{f(X)—P(X), xela, ) (25)

P(x), xe[&, b]
is not greater than n.
Remark. 1In what follows we agree that for | <k <n

SO =PU(x),  xelal)

FE&(x) = {P<k>(x), xe[& b].

Now we can state the main result in this section.
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THEOREM 1. Let the assumptions of Theorem B be satified. Given an r,
1 <r<m, if f satisfies (1.5) then

(=1 [ g(Xx) f(x) datx)

a

2(_1)2',-”:,. vi z aijf(j)(xi)ﬂ (26)

ej=1,i<r

(=)= [T (X x) f(x) do()

a

"
i

<(=1)*

SN f9(x). (2.7)

ej=1,i<r+1
Here v;’s are defined by (2.3)

Proof. Let us prove (2.6).
If r=1 and v, =0 then the right side of (2.6) is zero. Meanwhile, since

m

o(x) = (= 1)

for xe(a, x,), the left side of (2.6) is ' f(x) dx(x)>0. Thus in this case
(2.6) holds.

Now let r>1 or vy>0.

First, we are going to show that (2.6) holds if f satisfies (2.4) with & =x,.

Let £e(x, ,, x,) be arbitrary. Choose PeP, ;| so that F(x) defined in
(2.5) is annihilated by the pair (E’, X'), where E’ is obtained from E by
adding a 1 to position (4, &;), i=1,..,r—1, r+1, .., m.

We claim that

®(x) = [sgn(x —x,)] o(x) F.(x) (238)

does not change sign in (a, b).

In fact, suppose to the contrary that @(x) changes sign at ze(a, b). If
z¢ X then Foz)=0.If z=x,;, 1 <i<m, then &(x,—0) D(x;+ ) <0 holds
for all small 6 >0, which implies

(—1)" Fdx;—0) F(x,4+ ) <0,

where v;=v, for i#r and v;=v,—1 for i=r. By definition we conclude
FgV¢>(xi)=0. That is to say, the number of zeros of F. is not less than
|E'| +1=n+ 1. This contradicts Lemma A. This proves that @(x) does not
change sign in (a, b).
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Since £ e(x,_,, x,) is arbitrary, P(x) does not change sign in (x,_,, x,).
Meanwhile P(x, ;)= f(x,_;)>0. So P(x)>0, xe(x,_,, x,). This means

(—1)Z=id(x)<0, xe[a,b]. (2.9)

Thus

—fxr (— 1) (x) da(x) >0 > jb (— 1) d(x) da(x).  (2.10)

a

Hence as & — x, we obtain

b

(=)= [ o(x) f(x) doo) = (— 1)F [ () P(x) da(x)

a a

=(—DZ= Y a, fD(x). (2.11)

ej=1,i<r

Next, if f satsifies (1.5) only, then we consider f,(x)= f(x)+e&e”, ¢>0.
Applying the above conclusion and letting ¢ — 0 yields (2.6) (see [3]).

To prove (2.7) we use the same arguments as those above except for
¢e(x,, x,, ). In this case @(x) does not change sign in (a, b) and P(x) >0,
x€(x,, X, ). This means

(—1)Zi=r+17 @(x) =0, xela,b].

Thus

xr m b m
[T ) dalx) <0< [ (—1)F v () di),

a Xr

or, equivalently

(=1%o [V () f(x) da(x)

a

, b
<(—1)Tr J a(x) P(x) do(x)

a

=(=D==a N a f9(x).

ei=1i<r+1
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3

The following example illustrates that a generalized Markov—Stieltjes
inequality (1.6) can not be extended to a GGBQF.
It is easy to check that

Jl S(x) dx:f(—f)-i-f(t)—i—%f(“)(())’ =312

is exact for every f € Ps. Meanwhile for f(x) = (1 + x)’, which satisfies (1.5)
on [ —1, 1], we have

jt F(x) dx= (1 + )8 ~ 479,

Y apf ) ==+ 5 PO =(1-0)"+F>3>479.

xi<t

Thus (2.6) is violated.

In [6] we obtained the GGBQF as follows.

THEOREM C. Let an (m+2)x(n+1) incidence matrix E satsify the
delayed Polya conditions

k m+1
M(E):=) ) e;=k+1—p, k=0,1,..n,
j=0 i=0 (4.1)

M(E)=|E|=n+1-p

with the constant p=p, 0<p<m, and contain no odd non-Hermitian
sequences in the interior rows 1 <i<m. Then for any prescribed p interior
rows i, k=1, ..., p, there exists a set of nodes (1.1) such that (2.1) holds for
all feP,, where

yo—= ,u,‘+1, i:ila'")lpa (42)
Yol otherwise.
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If we put

dio» eio=1
N = 43
' {Os eiOZO ( )

then for this GGBQF the following is true.

THEOREM 2. Under the assumptions of Theorem C we have

(— 1= [ (: x) dalx) > (— 1) r_ilz,., I<r<m, (44)

a

(fl)zflmwf o(X;x)da(x) < (—=1)Z= Y 4 1<r<m. (45)

a i=0

Proof. Let us give the proof of (4.4) only, the one of (4.5) being similar.

Now let E’ be otained from E by adding a 1 to the position (i, u;) for
i=1iy,.. 1, and then by dropping the 1 in the position (r,v,—1). We
distinguish two cases.

Case 1. vo=v,=---=v,_,=0. In this case ly=4,=---=4,_,=0
by (4.3) and hence the right side of (4.4) is zero. On the other hand, since

m

o(x)=(—1)% xe(a, x,), (4.6)

the left side of (4.4) equals fjj do(x)>=0. Thus in this case (4.4) holds.

Case 2. v,>v, 1=---=v,_;=0 with 0<s<r—1. In this case for
¢e(xy, x,) and f=1 choose PeP,_, so that F:(x) in (2.5) is annihilated
by the pair E’, X.

We claim that @(x) in (2.8) does not change sign in (a, b).

In fact, suppose the contrary that @(x) changes sign at ze(a, b). If z¢ X
then F.(z) =0 and add a new Lagrangian row. If z=x,, 1 <i<m, then by
the arguments used in the proof of Theorem I we conclude F{"(x;) =0,
where v; is the smallest index j such that e;;=0 in E’, since E contains no
odd non-Hermitian sequences in the interior rows. In this case we add a 1
to position (i, v}). Let E be obtained from E’ by the above process. Then
F.(x) is annihilated by the pair E, Z= XU {z}, where E is still regular [4,
p.10]. Let Z,={xeZ:x<¢} and Z,=Z\Z,. Let E, and E, be the sub-
matrices of E corresponding to Z, and Z,. Then by the arguments used in
the proof of Lemma 1.7 in [4, p. 10] we can get matrices £} and E and
sets Z' and Z’ that annihilate the derivatives /" — P" and P’, respectively.
Meanwhile |E%|>|E,|_, and |E5|>|E,| —1. But f'— P = —P'. So the
pair E', Z/, annihilates P’, too. Hence the pair E' = E', + E,, Z), U Z), which
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is regular, annihilates the derivative P’. Noting that P'eP,_ , and
|E'|>|E| —2>=n—1, we conclude P’ =0, ie., P=const. This contradicts
the definition of P and proves the claim.

Since &e(x,, x,) is arbitrary, P(x) does not change sign in (x,, x,).
Meanwhile P(x,)=1. So P(x)>0, xe(x,, x,). Now we see that (2.9),
(2.10), and (2.11) with f=1 hold. This proves (4.4). |

5
For each i, 0 <i<m+ 1, let the bottom sequence in the ith row of the
matrix Ebe e, ,,= - =€, 4. 1=1 (i€, e; =0 for j<k, and j=k,+ 1,).
We agree that g,=0 and k,=k, if e;;=0 and that z,,,=0 and
k. 1=k,if e, ;=0. Then we have [7]

THEOREM D. Let an (m+2) % (n+ 1) incidence matrix E satisfy

ki <ki<kioo+ @i, i=0,..,1-1,
k;=0, i=1 .., J, (5.1)
kiflgkigkifl‘l'/zif]a l=J+1,,m+l,

for some 0 <I<J<m+1, and contain no odd non-bottom sequences in the
interior rows 1 <i<m. Assume that the number of odd bottom sequences in
the rows 1 <i<I—1 and J+ 1 <i<m is q and E satifies the delayed Polya
conditions (4.1) with the constant p=p, q<p<q+J—1+1. Then for any
prescribed p — q interior rows iy, I<i; < --- <i,_,<J, there exists a set of
nodes (1.1) with do(x)=dx such that (2.1) holds for all f € P,, where

0, i=1,.,I-1,J+1,..m
vi=< i +1, i=iy, iy, g (5.2)
i, otherwise.

Then for this GGBQF the following holds.

THEOREM 3. Under the assumptions of Theorem D we have

a

Xr s r_1
(_1)2?;,vij o(X;x)dx= (=D Y 4, I<r<J, (5.3)
i=0

(_1)2?’zr+1v"f o(X; x)dx <(—1)%i- Ly vi Z A I<r<J. (5.4)

a

Here A;’s are given by (4.3)
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Proof. Let us prove (5.3).

If r=1 then the right side of (5.3) is zero. On the other hand, since (4.6)
is true, the left side of (5.3) equals SA' dx>0. Thus in this case (5.3) holds.

Now let r>1 and let {e(x,_,,x,) be arbitrary. Assume that the ¢
rows containing odd bottom sequences are i, i, ..I,€ {1,..,1—1,
J+1, .., m}. Put

fi+1, i=iy,.. i,
w;=1"_ .
s otherwise.

I?i

It is easy to check that a(x)=sgn [ 7., (x — x;)*), where g(x) is defined by
(2.2) and (5.2). Let E' be obtained from E by adding a 1 to the position
(i,k;+pm,;) for i=i,.. i, and then by dropping the 1 in position

(r, k. +w,—1). In his case for f=1 choose PeP,_, so that F.(x) in (2.5)
is annihilated by the pair E’, X. Put

(a—x)" F(x)/(k)!,

xe[xl’xl+l)’ lglil’
) (b=x)f it FED () [k ),
0= xe[x;,x1) I<i<m—1, (55)
(b—x)fmst F &m0 (x) (ki 1),
xel[x,,b], i=m.
First, we are going to prove
r" o(x) O(x) dx:f" o(x) Fo(x) dx, (5.6)
b b
j o(x) O(x) dx=f o(x) F.(x) dx. (5.7)

Let us give the proof of (5.6) only, that of (5.7) being similar. We see

11 xip o'(_x) Xr

f\"r a(x) O(x) dx = Z [ T (a—x)" F%)(x) dx + j o(x) Fox) dx

R I—1 ki
= [ o(x) Fi(x) dx +ola DI

x[(a—x; ) FY~(x; ) (a—x;)) FY~V(x,)]
v (a_xf)jJrlF(gj)(xi)

—J x)dx+a(a 21: HZI:

A G
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Next, we claim that &(x)=[sgn(x—x,)] o(x) Q(x) does not change
sign in (a, b).

In fact, suppose to the contrary that @(x) changes sign at ze(qa, b). If
z¢X, say, ze(x;, x,,,), i<I—1, then F¥)(z)=0 and add a new row
(0, ...,0,1,0,..,0), where the 1 lies on the k; th column. If z=x;, 1 <i<m,
say, i<I—1, then &(x;,—0) D(x,4+0)<0 holds for all small 6 >0, which
implies
<0, i#r

[(=D) e FEI(x, = 0) L= D FE(x;+9) ] {>0, i

Here we need a simple observation: If a polynomial g(x) satisfies
g(y)=0,theng'(y—0) g(y—90)<0and g'(y+9) g(y+) =0 hold for all
small ¢ > 0. Thus remembering

F(.fki)(xi) — F(fkiJr U(X[) —_ ... = F(ék,drw,f 1)(xi) — 0’ l?é r
and

F(x)=F (x)= . =F o 2(x) =0, i=r,

by induction we obtain
wi+ki_1+ki+wi—ki_ ki+ w;
[(_1) +hi—1+ki+ 1F(5 + )(xl__é)]
X[(=1)NFE ) (x,+6)]<0,  i#r
and
[(_1)w,+k,-,1+k,-+(o,-7k,‘7171 F(ékx+wi*])(xl__(5)]
X[(_l)k,‘F(ékHrwifl)(xl__'_é)]20’ i=r,
or, equivalently,
F({ki+wi)('xi_6) Fitki+(0i)(X[+6) SO, i#r’
and

FEroDx,=0) FEr o x +0) <0, i=r,

hold for all small 6 >0. This explains shortly the reason for writing v’
instead of k,+ w,; or k,+ w,;— 1, respectively. Hence we can obtain a new
zero FU?(x;) =0, where v} is the smallest index j such that j >k, and ¢},=0
in E’, since E contains no odd non-bottom sequences in the interior rows.
In this case we add a 1 to the poition (i, v}). Let E* be otained from E’
by the above process. Then F; is annihilated by the pair E*, Z=Xu {z}.
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By the arguments used in the proof of Theorem 2 we can get a contradic-
tion. This proves that @ does not change sign.

Since ¢ e(x,_, x,) is arbitrary, P(x) does not change sign in (x,_,, x,).
Meanwhile P(x,_,)=1. So P(x) >0, xe(x,_,, x,). Now we see that (2.9)
and (2.10) hold. By (5.6) and (5.7) it follows from (2.10) that

J T (=)o) F(x) di(x) 203 fb (=1)¥="a(x) Fo(x) da(x).

a Xr

Hence (2.11) occurs. This proves (5.3).
We can prove (5.4) similarly. ||

REFERENCES

1. B. D. Bojanov, D. Braess, and N. Dyn, Generalized Gaussian quadrature formulas,
J. Approx. Theory 46 (1986), 335-353.

. G. Frend, “Orthogonal Polynomials,” Akad. Kiadd, Budapest/Pergamon, Oxford, 1971.

. L. Gori, The Posse-Markov-Stieltjes inequality for Turan type quadrature sums, in
“Progress in Approximation Theory” (P. Nevai and A. Pinkus, Eds.), pp.453-466,
Academic Press, New York, 1991.

4. G. G. Lorentz, K. Jetters, and S. D. Riemenschneider, “Birkhoff Interpolation,” Addison—
Wesley, Reading, MA/London, 1983.

5. G. Szegd, “Orthogonal Polynomials,” Amer. Math. Soc. Collog. Publ., Vol. 23, Amer.

Math. Soc., Providence, RI, 1939.

6. Y. G. Shi, Generalized Gaussian Birkhoff quadrature formulas, J. Approx. Theory 82
(1995), 392-398.

7. Y. G. Shi, Existence of generalized Gaussian Birkhoff quadrature formulas, Acta Sci. Math.

(Szeged) 59 (1994), 603-612.

[SSINS)



